Data-to-text summarisation of patient records: Using computer-generated summaries to access patient histories☆

نویسندگان

  • Donia Scott
  • Catalina Hallett
  • Rachel Fettiplace
چکیده

OBJECTIVE We assess the efficacy and utility of automatically generated textual summaries of patients' medical histories at the point of care. METHOD Twenty-one clinicians were presented with information about two cancer patients and asked to answer key questions. For each clinician, the information on one of the patients comprised their official hospital records, and for the other patient it comprised summaries that were computer-generated by a natural language generation system from data extracted from the official records. We measured the accuracy of the clinicians' responses to the questions, the time they took to complete them, and recorded their attitude to the computer-generated summaries. RESULTS Results showed no significant difference in the accuracy of responses to the computer-generated records over the official records, but a significant difference in the time taken to assess the patients' condition from the computer-generated records. Clinicians expressed a positive attitude towards the computer-generated records. CONCLUSION AI-based computer-generated textual summaries of patient histories can be as accurate as, and more efficient than, human-produced patient records for clinicians seeking to accurately identify key information about a patients overall history. PRACTICE IMPLICATIONS Computer-generated textual summaries of patient histories can contribute to the management of patients at the point-of-care.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Systematic literature review of fuzzy logic based text summarization

Information Overloadrq  is not a new term but with the massive development in technology which enables anytime, anywhere, easy and unlimited access; participation & publishing of information has consequently escalated its impact. Assisting userslq    informational searches with reduced reading surfing time by extracting and evaluating accurate, authentic & relevant information are the primary c...

متن کامل

BT-Nurse: computer generation of natural language shift summaries from complex heterogeneous medical data

The BT-Nurse system uses data-to-text technology to automatically generate a natural language nursing shift summary in a neonatal intensive care unit (NICU). The summary is solely based on data held in an electronic patient record system, no additional data-entry is required. BT-Nurse was tested for two months in the Royal Infirmary of Edinburgh NICU. Nurses were asked to rate the understandabi...

متن کامل

Towards Evaluating the Impact of Anaphora Resolution on Text Summarisation from a Human Perspective

Automatic Text Summarisation (TS) is the process of abstracting key content from information sources. Previous research attempted to combine diverse NLP techniques to improve the quality of the produced summaries. The study reported in this paper seeks to establish whether Anaphora Resolution (AR) can improve the quality of generated summaries, and to assess whether AR has the same impact on te...

متن کامل

Attribute-based Access Control for Cloud-based Electronic Health Record (EHR) Systems

Electronic health record (EHR) system facilitates integrating patients' medical information and improves service productivity. However, user access to patient data in a privacy-preserving manner is still challenging problem. Many studies concerned with security and privacy in EHR systems. Rezaeibagha and Mu [1] have proposed a hybrid architecture for privacy-preserving accessing patient records...

متن کامل

Data Extraction using Content-Based Handles

In this paper, we present an approach and a visual tool, called HWrap (Handle Based Wrapper), for creating web wrappers to extract data records from web pages. In our approach, we mainly rely on the visible page content to identify data regions on a web page. In our extraction algorithm, we inspired by the way a human user scans the page content for specific data. In particular, we use text fea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 92  شماره 

صفحات  -

تاریخ انتشار 2013